We have the following indirect implication of form equivalence classes:

168 \(\Rightarrow\) 358
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
168 \(\Rightarrow\) 100 clear
100 \(\Rightarrow\) 9 On the existence of large sets of Dedekind cardinals, Tarski, A. 1965, Notices Amer. Math. Soc.
The Axiom of Choice, Jech, 1973b, page 162 problem 11.8
9 \(\Rightarrow\) 10 Zermelo's Axiom of Choice, Moore, 1982, 322
10 \(\Rightarrow\) 358 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
168:

Dual Cantor-Bernstein Theorem:\((\forall x) (\forall y)(|x| \le^*|y|\) and \(|y|\le^* |x|\) implies  \(|x| = |y|)\) .

100:

Weak Partition Principle:  For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\).

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

358:

\(KW(\aleph_0,<\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of finite sets: For every denumerable set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).

Comment:

Back