We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
168 \(\Rightarrow\) 100 | clear |
100 \(\Rightarrow\) 9 |
On the existence of large sets of Dedekind cardinals, Tarski, A. 1965, Notices Amer. Math. Soc. The Axiom of Choice, Jech, 1973b, page 162 problem 11.8 |
9 \(\Rightarrow\) 13 | clear |
13 \(\Rightarrow\) 199(\(n\)) | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
168: | Dual Cantor-Bernstein Theorem:\((\forall x) (\forall y)(|x| \le^*|y|\) and \(|y|\le^* |x|\) implies \(|x| = |y|)\) . |
100: | Weak Partition Principle: For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\). |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
13: | Every Dedekind finite subset of \({\Bbb R}\) is finite. |
199(\(n\)): | (For \(n\in\omega-\{0,1\}\)) If all \(\varSigma^{1}_{n}\), Dedekind finite subsets of \({}^{\omega }\omega\) are finite, then all \(\varPi^1_n\) Dedekind finite subsets of \({}^{\omega} \omega\) are finite. |
Comment: