We have the following indirect implication of form equivalence classes:
			
| Implication | Reference | 
|---|---|
| 168 \(\Rightarrow\) 100 | clear | 
| 100 \(\Rightarrow\) 9 | 
							 	On the existence of large sets of Dedekind cardinals, Tarski,  A. 1965, Notices Amer. Math. Soc.  The Axiom of Choice, Jech, 1973b, page 162 problem 11.8  | 
					
| 9 \(\Rightarrow\) 376 | clear | 
| 376 \(\Rightarrow\) 377 | 
							 	Weak choice principles, De la Cruz,  O. 1998a, Proc. Amer. Math. Soc.  | 
					
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement | 
|---|---|
| 168: | Dual Cantor-Bernstein Theorem:\((\forall x) (\forall y)(|x| \le^*|y|\) and \(|y|\le^* |x|\) implies \(|x| = |y|)\) .  | 
					
| 100: | Weak Partition Principle: For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\).  | 
					
| 9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.  | 
					
| 376: | Restricted Kinna Wagner Principle: For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) and a function \(f\) such that for every \(z\subseteq Y\), if \(|z| \ge 2\) then \(f(z)\) is a non-empty proper subset of \(z\).  | 
					
| 377: | Restricted Ordering Principle: For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) such that \(Y\) can be linearly ordered.  | 
					
Comment: