We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
168 \(\Rightarrow\) 100 | clear |
100 \(\Rightarrow\) 9 |
On the existence of large sets of Dedekind cardinals, Tarski, A. 1965, Notices Amer. Math. Soc. The Axiom of Choice, Jech, 1973b, page 162 problem 11.8 |
9 \(\Rightarrow\) 10 | Zermelo's Axiom of Choice, Moore, 1982, 322 |
10 \(\Rightarrow\) 423 | clear |
423 \(\Rightarrow\) 374-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
168: | Dual Cantor-Bernstein Theorem:\((\forall x) (\forall y)(|x| \le^*|y|\) and \(|y|\le^* |x|\) implies \(|x| = |y|)\) . |
100: | Weak Partition Principle: For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\). |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
423: | \(\forall n\in \omega-\{o,1\}\), \(C(\aleph_0, n)\) : For every \(n\in \omega - \{0,1\}\), every denumerable set of \(n\) element sets has a choice function. |
374-n: | \(UT(\aleph_0,n,\aleph_0)\) for \(n\in\omega -\{0,1\}\): The union of a denumerable set of \(n\)-element sets is denumerable. |
Comment: