We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 168 \(\Rightarrow\) 100 | clear |
| 100 \(\Rightarrow\) 369 |
Communication sur les recherches de la th'eorie des ensembles, Lindenbaum, A. 1926, C. R. Soc. Sci. Lett. Varsovie |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 168: | Dual Cantor-Bernstein Theorem:\((\forall x) (\forall y)(|x| \le^*|y|\) and \(|y|\le^* |x|\) implies \(|x| = |y|)\) . |
| 100: | Weak Partition Principle: For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\). |
| 369: | If \(\Bbb R\) is partitioned into two sets, at least one of them has cardinality \(2^{\aleph_0}\). |
Comment: