We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 27 | clear |
27 \(\Rightarrow\) 31 | clear |
31 \(\Rightarrow\) 32 |
L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat. |
32 \(\Rightarrow\) 357 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
27: | \((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36. |
31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
32: | \(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets has a choice function. |
357: | \(KW(\aleph_0,\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of denumerable sets: For every denumerable set \(M\) of denumerable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). |
Comment: