We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
100 \(\Rightarrow\) 347 |
Partition principles and infinite sums of cardinal numbers, Higasikawa, M. 1995, Notre Dame J. Formal Logic |
347 \(\Rightarrow\) 40 |
Partition principles and infinite sums of cardinal numbers, Higasikawa, M. 1995, Notre Dame J. Formal Logic |
40 \(\Rightarrow\) 43 |
Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc. On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
43 \(\Rightarrow\) 78 | The Axiom of Choice, Jech, [1973b] The Axiom of Choice, Jech, [1973b] |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
100: | Weak Partition Principle: For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\). |
347: | Idemmultiple Partition Principle: If \(y\) is idemmultiple (\(2\times y\approx y\)) and \(x\precsim ^* y\), then \(x\precsim y\). |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
43: | \(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\) is a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\) then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\). See Tarski [1948], p 96, Levy [1964], p. 136. |
78: | Urysohn's Lemma: If \(A\) and \(B\) are disjoint closed sets in a normal space \(S\), then there is a continuous \(f:S\rightarrow [0,1]\) which is 1 everywhere in \(A\) and 0 everywhere in \(B\). Urysohn [1925], pp 290-292. |
Comment: