We have the following indirect implication of form equivalence classes:

106 \(\Rightarrow\) 131
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
106 \(\Rightarrow\) 126 Injectivity, projectivity and the axiom of choice, Blass, A. 1979, Trans. Amer. Math. Soc.
126 \(\Rightarrow\) 131 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
106:

Baire Category Theorem for Compact Hausdorff Spaces: Every compact Hausdorff space is Baire.

126:

\(MC(\aleph_0,\infty)\), Countable axiom of multiple choice: For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

131:

\(MC_\omega(\aleph_0,\infty)\): For every denumerable family \(X\) of pairwise disjoint non-empty sets, there is a function \(f\) such that for each \(x\in X\), f(x) is a non-empty countable subset of \(x\).

Comment:

Back