We have the following indirect implication of form equivalence classes:

106 \(\Rightarrow\) 35
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
106 \(\Rightarrow\) 126 Injectivity, projectivity and the axiom of choice, Blass, A. 1979, Trans. Amer. Math. Soc.
126 \(\Rightarrow\) 94 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
94 \(\Rightarrow\) 35 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
106:

Baire Category Theorem for Compact Hausdorff Spaces: Every compact Hausdorff space is Baire.

126:

\(MC(\aleph_0,\infty)\), Countable axiom of multiple choice: For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

35:

The union of countably many meager subsets of \({\Bbb R}\) is meager. (Meager sets are the same as sets of the first category.) Jech [1973b] p 7 prob 1.7.

Comment:

Back