We have the following indirect implication of form equivalence classes:

109 \(\Rightarrow\) 95-F
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
109 \(\Rightarrow\) 218 Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 120
218 \(\Rightarrow\) 95-F

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
109:

Every field \(F\) and every vector space \(V\) over \(F\) has the property that each linearly independent set \(A\subseteq V\) can be extended to a basis. H.Rubin/J.~Rubin [1985], pp 119ff.

218:

\((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then  there  is  a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\).

95-F:

Existence of Complementary Subspaces over a Field \(F\): If \(F\) is a field, then every vector space \(V\) over \(F\) has the property that if \(S\subseteq V\) is a subspace of \(V\), then there is a subspace \(S'\subseteq V\) such that \(S\cap S'= \{0\}\) and \(S\cup S'\) generates \(V\). H. Rubin/J. Rubin [1985], pp 119ff, and Jech [1973b], p 148 prob 10.4.

Comment:

Back