We have the following indirect implication of form equivalence classes:

109 \(\Rightarrow\) 423
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
109 \(\Rightarrow\) 218 Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 120
218 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 45-n clear
45-n \(\Rightarrow\) 33-n clear
33-n \(\Rightarrow\) 47-n clear
47-n \(\Rightarrow\) 423 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
109:

Every field \(F\) and every vector space \(V\) over \(F\) has the property that each linearly independent set \(A\subseteq V\) can be extended to a basis. H.Rubin/J.~Rubin [1985], pp 119ff.

218:

\((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then  there  is  a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\).

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

45-n:

If \(n\in\omega-\{0,1\}\), \(C(\infty,n)\): Every set of \(n\)-element sets has a choice function.

33-n:

If \(n\in\omega-\{0,1\}\), \(C(LO,n)\):  Every linearly ordered set of \(n\) element sets has  a choice function.

47-n:

If \(n\in\omega-\{0,1\}\), \(C(WO,n)\): Every well ordered collection of \(n\)-element sets has a choice function.

423:

\(\forall n\in \omega-\{o,1\}\), \(C(\aleph_0, n)\) : For every \(n\in  \omega - \{0,1\}\), every denumerable set of \(n\) element sets has a choice function.

Comment:

Back