We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
109 \(\Rightarrow\) 218 | Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 120 |
218 \(\Rightarrow\) 61 | clear |
61 \(\Rightarrow\) 88 | clear |
88 \(\Rightarrow\) 276 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
109: | Every field \(F\) and every vector space \(V\) over \(F\) has the property that each linearly independent set \(A\subseteq V\) can be extended to a basis. H.Rubin/J.~Rubin [1985], pp 119ff. |
218: | \((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\). |
61: | \((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element sets has a choice function. |
88: | \(C(\infty ,2)\): Every family of pairs has a choice function. |
276: | \(E(V'',III)\): For every set \(A\), \({\cal P}(A)\) is Dedekind finite if and only if \(A = \emptyset\) or \(2|{\cal P}(A)| > |{\cal P}(A)|\). \ac{Howard/Spi\u siak} \cite{1994}. |
Comment: