We have the following indirect implication of form equivalence classes:

109 \(\Rightarrow\) 140
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
109 \(\Rightarrow\) 218 Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 120
218 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 88 clear
88 \(\Rightarrow\) 140 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
109:

Every field \(F\) and every vector space \(V\) over \(F\) has the property that each linearly independent set \(A\subseteq V\) can be extended to a basis. H.Rubin/J.~Rubin [1985], pp 119ff.

218:

\((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then  there  is  a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\).

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

88:

  \(C(\infty ,2)\):  Every family of pairs has a choice function.

140:

Let \(\Omega\) be the set of all (undirected) infinite cycles of reals (Graphs whose vertices are real numbers, connected, no loops and each vertex adjacent to  exactly two others). Then there is a function \(f\) on \(\Omega \) such that for all \(s\in\Omega\), \(f(s)\) is a direction along \(s\).

Comment:

Back