We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
109 \(\Rightarrow\) 218 | Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 120 |
218 \(\Rightarrow\) 61 | clear |
61 \(\Rightarrow\) 88 | clear |
88 \(\Rightarrow\) 140 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
109: | Every field \(F\) and every vector space \(V\) over \(F\) has the property that each linearly independent set \(A\subseteq V\) can be extended to a basis. H.Rubin/J.~Rubin [1985], pp 119ff. |
218: | \((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\). |
61: | \((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element sets has a choice function. |
88: | \(C(\infty ,2)\): Every family of pairs has a choice function. |
140: | Let \(\Omega\) be the set of all (undirected) infinite cycles of reals (Graphs whose vertices are real numbers, connected, no loops and each vertex adjacent to exactly two others). Then there is a function \(f\) on \(\Omega \) such that for all \(s\in\Omega\), \(f(s)\) is a direction along \(s\). |
Comment: