We have the following indirect implication of form equivalence classes:

391 \(\Rightarrow\) 108
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
391 \(\Rightarrow\) 112 clear
112 \(\Rightarrow\) 90 Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79
90 \(\Rightarrow\) 91 The Axiom of Choice, Jech, 1973b, page 133
91 \(\Rightarrow\) 79 clear
79 \(\Rightarrow\) 94 clear
94 \(\Rightarrow\) 5 clear
5 \(\Rightarrow\) 38 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
38 \(\Rightarrow\) 108 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
391:

\(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function.

112:

\(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

91:

\(PW\):  The power set of a well ordered set can be well ordered.

79:

\({\Bbb R}\) can be well ordered.  Hilbert [1900], p 263.

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

5:

\(C(\aleph_0,\aleph_0,\Bbb R)\): Every denumerable set of non-empty denumerable subsets of \({\Bbb R}\) has a choice function.

38:

\({\Bbb R}\) is not the union of a countable family of countable sets.

108:

There is an ordinal \(\alpha\) such that \(2^{\aleph _{\alpha}}\) is not the union of a denumerable set of denumerable sets.

Comment:

Back