We have the following indirect implication of form equivalence classes:

391 \(\Rightarrow\) 19
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
391 \(\Rightarrow\) 112 clear
112 \(\Rightarrow\) 90 Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79
90 \(\Rightarrow\) 51 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
51 \(\Rightarrow\) 25 Choice and cofinal well-ordered subsets, Morris, D.B. 1969, Notices Amer. Math. Soc.
25 \(\Rightarrow\) 34 clear
34 \(\Rightarrow\) 19 Sur les fonctions representables analytiquement, Lebesgue, H. 1905, J. Math. Pures Appl.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
391:

\(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function.

112:

\(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

51:

Cofinality Principle: Every linear ordering has a cofinal sub well ordering.  Sierpi\'nski [1918], p 117.

25:

\(\aleph _{\beta +1}\) is regular for all ordinals \(\beta\).

34:

\(\aleph_{1}\) is regular.

19:

A real function is analytically representable if and only if it is in Baire's classification. G.Moore [1982], equation (2.3.1).

Comment:

Back