We have the following indirect implication of form equivalence classes:

391 \(\Rightarrow\) 316
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
391 \(\Rightarrow\) 112 clear
112 \(\Rightarrow\) 90 Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79
90 \(\Rightarrow\) 51 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
51 \(\Rightarrow\) 316 Well ordered subsets of linearly ordered sets, Howard, P. 1994, Notre Dame J. Formal Logic

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
391:

\(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function.

112:

\(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

51:

Cofinality Principle: Every linear ordering has a cofinal sub well ordering.  Sierpi\'nski [1918], p 117.

316:

If a linearly ordered set \((A,\le)\) has the fixed point property then \((A,\le)\) is complete. (\((A,\le)\)  has the fixed point property if every function \(f:A\to A\) satisfying \((x\le y \Rightarrow f(x)\le f(y))\) has a fixed point, and (\((A,\le)\) is complete if every subset of \(A\) has a least upper bound.)

Comment:

Back