We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
391 \(\Rightarrow\) 112 | clear |
112 \(\Rightarrow\) 90 | Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79 |
90 \(\Rightarrow\) 51 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
51 \(\Rightarrow\) 316 |
Well ordered subsets of linearly ordered sets, Howard, P. 1994, Notre Dame J. Formal Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
391: | \(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function. |
112: | \(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
51: | Cofinality Principle: Every linear ordering has a cofinal sub well ordering. Sierpi\'nski [1918], p 117. |
316: | If a linearly ordered set \((A,\le)\) has the fixed point property then \((A,\le)\) is complete. (\((A,\le)\) has the fixed point property if every function \(f:A\to A\) satisfying \((x\le y \Rightarrow f(x)\le f(y))\) has a fixed point, and (\((A,\le)\) is complete if every subset of \(A\) has a least upper bound.) |
Comment: