We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
391 \(\Rightarrow\) 112 | clear |
112 \(\Rightarrow\) 90 | Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79 |
90 \(\Rightarrow\) 91 | The Axiom of Choice, Jech, 1973b, page 133 |
91 \(\Rightarrow\) 79 | clear |
79 \(\Rightarrow\) 367 |
Eine Basis aller Zahlen und die unstetigen Losungen der Functionalgleichung: \(f(x+y) = f(x) + f(y)\), Hamel, G. 1905, Math. Ann. |
367 \(\Rightarrow\) 366 |
Eine Basis aller Zahlen und die unstetigen Losungen der Functionalgleichung: \(f(x+y) = f(x) + f(y)\), Hamel, G. 1905, Math. Ann. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
391: | \(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function. |
112: | \(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
91: | \(PW\): The power set of a well ordered set can be well ordered. |
79: | \({\Bbb R}\) can be well ordered. Hilbert [1900], p 263. |
367: | There is a Hamel basis for \(\Bbb R\) as a vector space over \(\Bbb Q\). |
366: | There is a discontinuous function \(f: \Bbb R \to\Bbb R\) such that for all real \(x\) and \(y\), \(f(x+y)=f(x)+f(y)\). |
Comment: