We have the following indirect implication of form equivalence classes:

391 \(\Rightarrow\) 119
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
391 \(\Rightarrow\) 112 clear
112 \(\Rightarrow\) 90 Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79
90 \(\Rightarrow\) 118 Horrors of topology without AC: A non-normal orderable space, van Douwen, E.K. 1985, Proc. Amer. Math. Soc.
118 \(\Rightarrow\) 119 Horrors of topology without AC: A non-normal orderable space, van Douwen, E.K. 1985, Proc. Amer. Math. Soc.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
391:

\(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function.

112:

\(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

118:

Every linearly orderable topological space is normal.  Birkhoff [1967], p 241.

119:

van Douwen's choice principle: \(C(\aleph_{0}\),uniformly orderable with order type of the integers): Suppose \(\{ A_{i}: i\in\omega\}\) is a set and there is a function \(f\) such that for each \(i\in\omega,\ f(i)\) is an ordering of \(A_{i}\) of type \(\omega^{*}+\omega\) (the usual ordering of the integers), then \(\{A_{i}: i\in\omega\}\) has a choice function.

Comment:

Back