We have the following indirect implication of form equivalence classes:

391 \(\Rightarrow\) 330
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
391 \(\Rightarrow\) 112 clear
112 \(\Rightarrow\) 395 clear
395 \(\Rightarrow\) 396 clear
396 \(\Rightarrow\) 330 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
391:

\(C(\infty,LO)\): Every set of non-empty linearly orderable sets has a choice function.

112:

\(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

395:

\(MC(LO,LO)\): For each linearly ordered family of non-empty linearly orderable sets \(X\), there is a function \(f\) such that for all \(x\in X\) \(f(x)\) is a non-empty, finite subset of \(x\).

396:

\(MC(LO,WO)\): For each linearly ordered family of non-empty well orderable sets \(X\), there is a function \(f\) such that for all \(x\in X\) \(f(x)\) is a non-empty, finite subset of \(x\).

330:

\(MC(WO,WO)\): For every well ordered set \(X\) of well orderable sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).  (See Form 67.)

Comment:

Back