We have the following indirect implication of form equivalence classes:

393 \(\Rightarrow\) 401
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
393 \(\Rightarrow\) 121 clear
121 \(\Rightarrow\) 401 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
393:

\(C(LO,WO)\): Every linearly ordered set of non-empty well orderable sets has a choice function.

121:

\(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function.

401:

\(KW(LO,<\aleph_0)\), The Kinna-Wagner Selection Principle for a linearly ordered set of finite sets: For every linearly ordered set of finite sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).

Comment:

Back