We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
393 \(\Rightarrow\) 121 | clear |
121 \(\Rightarrow\) 122 | clear |
122 \(\Rightarrow\) 10 | clear |
10 \(\Rightarrow\) 216 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
393: | \(C(LO,WO)\): Every linearly ordered set of non-empty well orderable sets has a choice function. |
121: | \(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function. |
122: | \(C(WO,<\aleph_{0})\): Every well ordered set of non-empty finite sets has a choice function. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
216: | Every infinite tree has either an infinite chain or an infinite antichain. |
Comment: