We have the following indirect implication of form equivalence classes:

393 \(\Rightarrow\) 216
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
393 \(\Rightarrow\) 121 clear
121 \(\Rightarrow\) 122 clear
122 \(\Rightarrow\) 10 clear
10 \(\Rightarrow\) 216

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
393:

\(C(LO,WO)\): Every linearly ordered set of non-empty well orderable sets has a choice function.

121:

\(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function.

122:

\(C(WO,<\aleph_{0})\): Every well ordered set of non-empty finite sets has a choice function.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

216:

Every infinite tree has either an infinite chain or an infinite antichain.

Comment:

Back