We have the following indirect implication of form equivalence classes:

151 \(\Rightarrow\) 389
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
151 \(\Rightarrow\) 122 Russell's alternative to the axiom of choice, Howard, P. 1992, Z. Math. Logik Grundlagen Math.
note-27
122 \(\Rightarrow\) 10 clear
10 \(\Rightarrow\) 80 clear
80 \(\Rightarrow\) 389 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
151:

\(UT(WO,\aleph_{0},WO)\) (\(U_{\aleph_{1}}\)): The union of a well ordered set of denumerable sets is well  orderable. (If \(\kappa\) is a well ordered cardinal, see note 27 for \(UT(WO,\kappa,WO)\).)

122:

\(C(WO,<\aleph_{0})\): Every well ordered set of non-empty finite sets has a choice function.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

80:

\(C(\aleph_{0},2)\):  Every denumerable set of  pairs has  a  choice function.

389:

\(C(\aleph_0,2,\cal P({\Bbb R}))\): Every denumerable family of two element subsets of \(\cal P({\Bbb R})\) has a choice function.  \ac{Keremedis} \cite{1999b}.

Comment:

Back