We have the following indirect implication of form equivalence classes:

23 \(\Rightarrow\) 250
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
23 \(\Rightarrow\) 151 clear
151 \(\Rightarrow\) 122 Russell's alternative to the axiom of choice, Howard, P. 1992, Z. Math. Logik Grundlagen Math.
note-27
122 \(\Rightarrow\) 250 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
23:

\((\forall \alpha)(UT(\aleph_{\alpha},\aleph_{\alpha}, \aleph_{\alpha}))\): For every ordinal \(\alpha\), if \(A\) and every member of \(A\) has cardinality \(\aleph_{\alpha}\), then \(|\bigcup A| = \aleph _{\alpha }\).

151:

\(UT(WO,\aleph_{0},WO)\) (\(U_{\aleph_{1}}\)): The union of a well ordered set of denumerable sets is well  orderable. (If \(\kappa\) is a well ordered cardinal, see note 27 for \(UT(WO,\kappa,WO)\).)

122:

\(C(WO,<\aleph_{0})\): Every well ordered set of non-empty finite sets has a choice function.

250:

\((\forall n\in\omega-\{0,1\})(C(WO,n))\): For every natural number \(n\ge 2\), every well ordered family of \(n\) element sets has a choice function.

Comment:

Back