We have the following indirect implication of form equivalence classes:

328 \(\Rightarrow\) 13
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
328 \(\Rightarrow\) 126 clear
126 \(\Rightarrow\) 94 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
94 \(\Rightarrow\) 13 The Axiom of Choice, Jech, 1973b, page 148 problem 10.1

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
328:

\(MC(WO,\infty)\): For  every well ordered set \(X\) such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that and for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). (See Form 67.)

126:

\(MC(\aleph_0,\infty)\), Countable axiom of multiple choice: For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

13:

Every Dedekind finite subset of \({\Bbb R}\) is finite.

Comment:

Back