We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
328 \(\Rightarrow\) 126 | clear |
126 \(\Rightarrow\) 82 | note-76 |
82 \(\Rightarrow\) 83 |
Definitions of finite, Howard, P. 1989, Fund. Math. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
328: | \(MC(WO,\infty)\): For every well ordered set \(X\) such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that and for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). (See Form 67.) |
126: | \(MC(\aleph_0,\infty)\), Countable axiom of multiple choice: For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
82: | \(E(I,III)\) (Howard/Yorke [1989]): If \(X\) is infinite then \(\cal P(X)\) is Dedekind infinite. (\(X\) is finite \(\Leftrightarrow {\cal P}(X)\) is Dedekind finite.) |
83: | \(E(I,II)\) Howard/Yorke [1989]: \(T\)-finite is equivalent to finite. |
Comment: