We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
378 \(\Rightarrow\) 132 |
Weak choice principles, De la Cruz, O. 1998a, Proc. Amer. Math. Soc. |
132 \(\Rightarrow\) 10 |
Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung |
10 \(\Rightarrow\) 216 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
378: | Restricted Choice for Families of Well Ordered Sets: For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) such that the family of non-empty well orderable subsets of \(Y\) has a choice function. |
132: | \(PC(\infty, <\aleph_0,\infty)\): Every infinite family of finite sets has an infinite subfamily with a choice function. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
216: | Every infinite tree has either an infinite chain or an infinite antichain. |
Comment: