We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
133 \(\Rightarrow\) 231 | note-123 |
231 \(\Rightarrow\) 151 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
133: | Every set is either well orderable or has an infinite amorphous subset. |
231: | \(UT(WO,WO,WO)\): The union of a well ordered collection of well orderable sets is well orderable. |
151: | \(UT(WO,\aleph_{0},WO)\) (\(U_{\aleph_{1}}\)): The union of a well ordered set of denumerable sets is well orderable. (If \(\kappa\) is a well ordered cardinal, see note 27 for \(UT(WO,\kappa,WO)\).) |
Comment: