We have the following indirect implication of form equivalence classes:

394 \(\Rightarrow\) 423
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
394 \(\Rightarrow\) 165 clear
165 \(\Rightarrow\) 32 clear
32 \(\Rightarrow\) 10 clear
10 \(\Rightarrow\) 423 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
394:

\(C(WO,LO)\): Every well ordered set of non-empty linearly orderable sets has a choice function.

165:

\(C(WO,WO)\):  Every well ordered family of non-empty, well orderable sets has a choice function.

32:

\(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets  has a choice function.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

423:

\(\forall n\in \omega-\{o,1\}\), \(C(\aleph_0, n)\) : For every \(n\in  \omega - \{0,1\}\), every denumerable set of \(n\) element sets has a choice function.

Comment:

Back