We have the following indirect implication of form equivalence classes:

86-alpha \(\Rightarrow\) 74
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
86-alpha \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 94 clear
94 \(\Rightarrow\) 74 note-10

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
86-alpha:

\(C(\aleph_{\alpha},\infty)\): If \(X\) is a set of non-empty sets such that \(|X| = \aleph_{\alpha }\), then \(X\) has a choice function.

8:

\(C(\aleph_{0},\infty)\):

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

74:

For every \(A\subseteq\Bbb R\) the following are equivalent:

  1. \(A\) is closed and bounded.
  2. Every sequence \(\{x_{n}\}\subseteq A\) has a convergent subsequence with limit in A.
Jech [1973b], p 21.

Comment:

Back