We have the following indirect implication of form equivalence classes:

264 \(\Rightarrow\) 350
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
264 \(\Rightarrow\) 202 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
202 \(\Rightarrow\) 40 clear
40 \(\Rightarrow\) 39 clear
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 27 clear
27 \(\Rightarrow\) 31 clear
31 \(\Rightarrow\) 32 L’axiome de M. Zermelo et son rˆole dans la th´eorie des ensembles et l’analyse, Sierpi'nski, W. 1918, Bull. Int. Acad. Sci. Cracovie Cl. Math. Nat.
32 \(\Rightarrow\) 350 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
264:

\(H(C,P)\): Every connected relation \((X,R)\) contains a \(\subseteq\)-maximal partially ordered set.

202:

\(C(LO,\infty)\): Every linearly ordered family of non-empty sets has  a choice function.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

27:

\((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The  union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36.

31:

\(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem:  The union of a denumerable set of denumerable sets is denumerable.

32:

\(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets  has a choice function.

350:

\(MC(\aleph_0,\aleph_0)\): For every denumerable set \(X\) of non-empty denumerable sets there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).

Comment:

Back