We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
264 \(\Rightarrow\) 202 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
202 \(\Rightarrow\) 40 | clear |
40 \(\Rightarrow\) 39 | clear |
39 \(\Rightarrow\) 8 | clear |
8 \(\Rightarrow\) 9 | Was sind und was sollen die Zollen?, Dedekind, [1888] |
9 \(\Rightarrow\) 376 | clear |
376 \(\Rightarrow\) 167 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
264: | \(H(C,P)\): Every connected relation \((X,R)\) contains a \(\subseteq\)-maximal partially ordered set. |
202: | \(C(LO,\infty)\): Every linearly ordered family of non-empty sets has a choice function. |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
8: | \(C(\aleph_{0},\infty)\): |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
376: | Restricted Kinna Wagner Principle: For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) and a function \(f\) such that for every \(z\subseteq Y\), if \(|z| \ge 2\) then \(f(z)\) is a non-empty proper subset of \(z\). |
167: | \(PKW(\aleph_{0},\ge 2,\infty)\), Partial Kinna-Wagner Principle: For every denumerable family \(F\) such that for all \(x\in F\), \(|x|\ge 2\), there is an infinite subset \(H\subseteq F\) and a function \(f\) such that for all \(x\in H\), \(\emptyset\neq f(x) \subsetneq x\). |
Comment: