We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
264 \(\Rightarrow\) 202 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
202 \(\Rightarrow\) 121 | clear |
121 \(\Rightarrow\) 33-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
264: | \(H(C,P)\): Every connected relation \((X,R)\) contains a \(\subseteq\)-maximal partially ordered set. |
202: | \(C(LO,\infty)\): Every linearly ordered family of non-empty sets has a choice function. |
121: | \(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function. |
33-n: | If \(n\in\omega-\{0,1\}\), \(C(LO,n)\): Every linearly ordered set of \(n\) element sets has a choice function. |
Comment: