We have the following indirect implication of form equivalence classes:

264 \(\Rightarrow\) 47-n
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
264 \(\Rightarrow\) 202 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
202 \(\Rightarrow\) 121 clear
121 \(\Rightarrow\) 33-n clear
33-n \(\Rightarrow\) 47-n clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
264:

\(H(C,P)\): Every connected relation \((X,R)\) contains a \(\subseteq\)-maximal partially ordered set.

202:

\(C(LO,\infty)\): Every linearly ordered family of non-empty sets has  a choice function.

121:

\(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function.

33-n:

If \(n\in\omega-\{0,1\}\), \(C(LO,n)\):  Every linearly ordered set of \(n\) element sets has  a choice function.

47-n:

If \(n\in\omega-\{0,1\}\), \(C(WO,n)\): Every well ordered collection of \(n\)-element sets has a choice function.

Comment:

Back