We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
264 \(\Rightarrow\) 202 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
202 \(\Rightarrow\) 40 | clear |
40 \(\Rightarrow\) 337 | clear |
337 \(\Rightarrow\) 92 | clear |
92 \(\Rightarrow\) 170 |
Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
264: | \(H(C,P)\): Every connected relation \((X,R)\) contains a \(\subseteq\)-maximal partially ordered set. |
202: | \(C(LO,\infty)\): Every linearly ordered family of non-empty sets has a choice function. |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
337: | \(C(WO\), uniformly linearly ordered): If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\). |
92: | \(C(WO,{\Bbb R})\): Every well ordered family of non-empty subsets of \({\Bbb R}\) has a choice function. |
170: | \(\aleph_{1}\le 2^{\aleph_{0}}\). |
Comment: