We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
264 \(\Rightarrow\) 202 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
202 \(\Rightarrow\) 91 | note-75 |
91 \(\Rightarrow\) 79 | clear |
79 \(\Rightarrow\) 70 | clear |
70 \(\Rightarrow\) 142 | The Axiom of Choice, Jech, 1973b, page 7 problem 11 |
142 \(\Rightarrow\) 280 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
264: | \(H(C,P)\): Every connected relation \((X,R)\) contains a \(\subseteq\)-maximal partially ordered set. |
202: | \(C(LO,\infty)\): Every linearly ordered family of non-empty sets has a choice function. |
91: | \(PW\): The power set of a well ordered set can be well ordered. |
79: | \({\Bbb R}\) can be well ordered. Hilbert [1900], p 263. |
70: | There is a non-trivial ultrafilter on \(\omega\). Jech [1973b], prob 5.24. |
142: | \(\neg PB\): There is a set of reals without the property of Baire. Jech [1973b], p. 7. |
280: | There is a complete separable metric space with a subset which does not have the Baire property. |
Comment: