We have the following indirect implication of form equivalence classes:

264 \(\Rightarrow\) 197
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
264 \(\Rightarrow\) 202 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
202 \(\Rightarrow\) 91 note-75
91 \(\Rightarrow\) 79 clear
79 \(\Rightarrow\) 197 The plane is the union of three rectilinearly accessible sets, Davies, R. O. 1978, Real Anal. Exchange.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
264:

\(H(C,P)\): Every connected relation \((X,R)\) contains a \(\subseteq\)-maximal partially ordered set.

202:

\(C(LO,\infty)\): Every linearly ordered family of non-empty sets has  a choice function.

91:

\(PW\):  The power set of a well ordered set can be well ordered.

79:

\({\Bbb R}\) can be well ordered.  Hilbert [1900], p 263.

197:

\({\Bbb R}^{2}\) is the union of three sets \(C\) with the property that for all \(x\in C\) there is a straight line \(L\) such that \(L\cap C = \{x\}\).

Comment:

Back