We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
264 \(\Rightarrow\) 202 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
202 \(\Rightarrow\) 121 | clear |
121 \(\Rightarrow\) 401 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
264: | \(H(C,P)\): Every connected relation \((X,R)\) contains a \(\subseteq\)-maximal partially ordered set. |
202: | \(C(LO,\infty)\): Every linearly ordered family of non-empty sets has a choice function. |
121: | \(C(LO,<\aleph_{0})\): Every linearly ordered set of non-empty finite sets has a choice function. |
401: | \(KW(LO,<\aleph_0)\), The Kinna-Wagner Selection Principle for a linearly ordered set of finite sets: For every linearly ordered set of finite sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). |
Comment: