We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
239 \(\Rightarrow\) 427 | clear |
427 \(\Rightarrow\) 67 | clear |
67 \(\Rightarrow\) 115 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
239: | AL20(\(\mathbb Q\)): Every vector \(V\) space over \(\mathbb Q\) has the property that every linearly independent subset of \(V\) can be extended to a basis. Rubin, H./Rubin, J. [1985], p.119, AL20. |
427: | \(\exists F\) AL20(\(F\)): There is a field \(F\) such that every vector space \(V\) over \(F\) has the property that every independent subset of \(V\) can be extended to a basis. \ac{Bleicher} \cite{1964}, \ac{Rubin, H.\/Rubin, J \cite{1985, p.119, AL20}. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
115: | The product of weakly Loeb \(T_2\) spaces is weakly Loeb. Weakly Loeb means the set of non-empty closed subsets has a multiple choice function.) |
Comment: