We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
255 \(\Rightarrow\) 260 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
260 \(\Rightarrow\) 40 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
40 \(\Rightarrow\) 86-alpha | clear |
86-alpha \(\Rightarrow\) 196-alpha |
Successive large cardinals, Bull Jr., E. L. 1978, Ann. Math. Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
255: | \(Z(D,R)\): Every directed relation \((P,R)\) in which every ramified subset \(A\) has an upper bound, has a maximal element. |
260: | \(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element. |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
86-alpha: | \(C(\aleph_{\alpha},\infty)\): If \(X\) is a set of non-empty sets such that \(|X| = \aleph_{\alpha }\), then \(X\) has a choice function. |
196-alpha: | \(\aleph_{\alpha}\) and \(\aleph_{\alpha+1}\) are not both measurable. |
Comment: