We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 261 \(\Rightarrow\) 256 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
| 256 \(\Rightarrow\) 255 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
| 255 \(\Rightarrow\) 260 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
| 260 \(\Rightarrow\) 40 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
| 40 \(\Rightarrow\) 39 | clear |
| 39 \(\Rightarrow\) 8 | clear |
| 8 \(\Rightarrow\) 27 | clear |
| 27 \(\Rightarrow\) 31 | clear |
| 31 \(\Rightarrow\) 419 |
Metric spaces and the axiom of choice, De-la-Cruz-Hall-Howard-Keremedis-Rubin-2002A[2002A], Math. Logic Quart. |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 261: | \(Z(TR,T)\): Every transitive relation \((X,R)\) in which every subset which is a tree has an upper bound, has a maximal element. |
| 256: | \(Z(P,F)\): Every partially ordered set \((X,R)\) in which every forest \(A\) has an upper bound, has a maximal element. |
| 255: | \(Z(D,R)\): Every directed relation \((P,R)\) in which every ramified subset \(A\) has an upper bound, has a maximal element. |
| 260: | \(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element. |
| 40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
| 39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
| 8: | \(C(\aleph_{0},\infty)\): |
| 27: | \((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36. |
| 31: | \(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem: The union of a denumerable set of denumerable sets is denumerable. |
| 419: | UT(\(\aleph_0\),cuf,cuf): The union of a denumerable set of cuf sets is cuf. (A set is cuf if it is a countable union of finite sets.) |
Comment: