We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
261 \(\Rightarrow\) 256 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
256 \(\Rightarrow\) 255 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
255 \(\Rightarrow\) 260 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
260 \(\Rightarrow\) 40 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
40 \(\Rightarrow\) 231 |
Abzählbarkeit und Wohlordenbarkeit, Felgner, U. 1974, Comment. Math. Helv. |
231 \(\Rightarrow\) 294 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
261: | \(Z(TR,T)\): Every transitive relation \((X,R)\) in which every subset which is a tree has an upper bound, has a maximal element. |
256: | \(Z(P,F)\): Every partially ordered set \((X,R)\) in which every forest \(A\) has an upper bound, has a maximal element. |
255: | \(Z(D,R)\): Every directed relation \((P,R)\) in which every ramified subset \(A\) has an upper bound, has a maximal element. |
260: | \(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element. |
40: | \(C(WO,\infty)\): Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325. |
231: | \(UT(WO,WO,WO)\): The union of a well ordered collection of well orderable sets is well orderable. |
294: | Every linearly ordered \(W\)-set is well orderable. |
Comment: