We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
161 \(\Rightarrow\) 9 |
Defining cardinal addition by \(le\)-formulas, Haussler, A. 1983, Fund. Math. |
9 \(\Rightarrow\) 198 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
161: | Definability of cardinal addition in terms of \(\le\): There is a first order formula whose only non-logical symbol is \( \le \) (for cardinals) that defines cardinal addition. |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
198: | For every set \(S\), if the only linearly orderable subsets of \(S\) are the finite subsets of \(S\), then either \(S\) is finite or \(S\) has an amorphous subset. |
Comment: