We have the following indirect implication of form equivalence classes:

257 \(\Rightarrow\) 127
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
257 \(\Rightarrow\) 260 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
260 \(\Rightarrow\) 40 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
40 \(\Rightarrow\) 39 clear
39 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 9 Was sind und was sollen die Zollen?, Dedekind, [1888]
9 \(\Rightarrow\) 64 The independence of various definitions of finiteness, Levy, A. 1958, Fund. Math.
clear
64 \(\Rightarrow\) 127 Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
257:

\(Z(TR,P)\): Every transitive relation \((X,R)\) in which  every partially ordered subset has an upper bound, has a maximal element.

260:

\(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

39:

\(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202.

8:

\(C(\aleph_{0},\infty)\):

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

64:

\(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.)

127:

An amorphous power of a compact \(T_2\) space, which as a set is well orderable, is well orderable.

Comment:

Back