We have the following indirect implication of form equivalence classes:

257 \(\Rightarrow\) 388
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
257 \(\Rightarrow\) 260 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
260 \(\Rightarrow\) 40 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
40 \(\Rightarrow\) 43 Consistency results for $ZF$, Jensen, R.B. 1967, Notices Amer. Math. Soc.
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
43 \(\Rightarrow\) 388

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
257:

\(Z(TR,P)\): Every transitive relation \((X,R)\) in which  every partially ordered subset has an upper bound, has a maximal element.

260:

\(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

43:

\(DC(\omega)\) (DC), Principle of Dependent Choices: If \(S\)  is  a relation on a non-empty set \(A\) and \((\forall x\in A) (\exists y\in A)(x S y)\)  then there is a sequence \(a(0), a(1), a(2), \ldots\) of elements of \(A\) such that \((\forall n\in\omega)(a(n)\mathrel S a(n+1))\).  See Tarski [1948], p 96, Levy [1964], p. 136.

388:

Every infinite branching poset (a partially ordered set in which each element has at least two lower bounds) has either an infinite chain or an infinite antichain.

Comment:

Back