We have the following indirect implication of form equivalence classes:

257 \(\Rightarrow\) 93
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
257 \(\Rightarrow\) 260 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
260 \(\Rightarrow\) 40 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
40 \(\Rightarrow\) 337 clear
337 \(\Rightarrow\) 92 clear
92 \(\Rightarrow\) 170 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
170 \(\Rightarrow\) 93 Zermelo's Axiom of Choice, Moore, [1982]

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
257:

\(Z(TR,P)\): Every transitive relation \((X,R)\) in which  every partially ordered subset has an upper bound, has a maximal element.

260:

\(Z(TR\&C,P)\): If \((X,R)\) is a transitive and connected relation in which every partially ordered subset has an upper bound, then \((X,R)\) has a maximal element.

40:

\(C(WO,\infty)\):  Every well orderable set of non-empty sets has a choice function. Moore, G. [1982], p 325.

337:

\(C(WO\), uniformly linearly ordered):  If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\).

92:

\(C(WO,{\Bbb R})\):  Every well ordered family of non-empty subsets of \({\Bbb R}\) has a choice function.

170:

\(\aleph_{1}\le 2^{\aleph_{0}}\).

93:

There is a non-measurable subset of \({\Bbb R}\).

Comment:

Back