We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
41 \(\Rightarrow\) 9 | clear |
9 \(\Rightarrow\) 84 |
Definitions of finite, Howard, P. 1989, Fund. Math. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
41: | \(W_{\aleph _{1}}\): For every cardinal \(m\), \(m \le \aleph_{1}\) or \(\aleph_{1}\le m \). |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
84: | \(E(II,III)\) (Howard/Yorke [1989]): \((\forall x)(x\) is \(T\)-finite if and only if \(\cal P(x)\) is Dedekind finite). |
Comment: