We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
322 \(\Rightarrow\) 324 | clear |
324 \(\Rightarrow\) 327 | clear |
327 \(\Rightarrow\) 358 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
322: | \(KW(WO,\infty)\), The Kinna-Wagner Selection Principle for a well ordered family of sets: For every well ordered set \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15). |
324: | \(KW(WO,WO)\), The Kinna-Wagner Selection Principle for a well ordered family of well orderable sets: For every well ordered set \(M\) of well orderable sets, there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
327: | \(KW(WO,<\aleph_0)\), The Kinna-Wagner Selection Principle for a well ordered family of finite sets: For every well ordered set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
358: | \(KW(\aleph_0,<\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of finite sets: For every denumerable set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). |
Comment: