We have the following indirect implication of form equivalence classes:

399 \(\Rightarrow\) 142
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
399 \(\Rightarrow\) 323 clear
323 \(\Rightarrow\) 62 note-70
62 \(\Rightarrow\) 61 clear
61 \(\Rightarrow\) 88 clear
88 \(\Rightarrow\) 142 The Axiom of Choice, Jech, 1973b, page 7 problem 11

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
399:

\(KW(\infty,LO)\), The Kinna-Wagner Selection Principle for a set of linearly orderable sets: For every set of linearly orderable sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\).

323:

\(KW(\infty,WO)\), The Kinna-Wagner Selection Principle for a family of well orderable sets: For every set \(M\) of well orderable sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).  (See Form 15.)

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

61:

\((\forall n\in\omega, n\ge 2\))\((C(\infty,n))\): For each \(n\in\omega\), \(n\ge 2\), every set of \(n\) element  sets has a choice function.

88:

  \(C(\infty ,2)\):  Every family of pairs has a choice function.

142:

\(\neg  PB\):  There is a set of reals without the property of Baire.  Jech [1973b], p. 7.

Comment:

Back