We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
402 \(\Rightarrow\) 324 | clear |
324 \(\Rightarrow\) 327 | clear |
327 \(\Rightarrow\) 250 | clear |
250 \(\Rightarrow\) 111 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
402: | \(KW(WO,LO)\), The Kinna-Wagner Selection Principle for a well ordered set of linearly orderable sets: For every well ordered set of linearly orderable sets \(M\) there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). |
324: | \(KW(WO,WO)\), The Kinna-Wagner Selection Principle for a well ordered family of well orderable sets: For every well ordered set \(M\) of well orderable sets, there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
327: | \(KW(WO,<\aleph_0)\), The Kinna-Wagner Selection Principle for a well ordered family of finite sets: For every well ordered set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A|>1\) then \(\emptyset\neq f(A)\subsetneq A\). (See Form 15.) |
250: | \((\forall n\in\omega-\{0,1\})(C(WO,n))\): For every natural number \(n\ge 2\), every well ordered family of \(n\) element sets has a choice function. |
111: | \(UT(WO,2,WO)\): The union of an infinite well ordered set of 2-element sets is an infinite well ordered set. |
Comment: