We have the following indirect implication of form equivalence classes:

331 \(\Rightarrow\) 378
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
331 \(\Rightarrow\) 332 Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal
332 \(\Rightarrow\) 343 Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal
343 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 378 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
331:

If \((X_i)_{i\in I}\) is a family of compact non-empty topological spaces then there is a family \((F_i)_{i\in I}\) such that \(\forall i\in I\), \(F_i\) is an irreducible closed subset of \(X_i\).

332:  

A product of non-empty compact sober topological spaces is non-empty.

343:

A product of non-empty, compact \(T_2\) topological spaces is non-empty.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

378:

Restricted Choice for Families of Well Ordered Sets:  For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) such that the family of non-empty well orderable subsets of \(Y\) has a choice function.

Comment:

Back