We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
331 \(\Rightarrow\) 332 |
Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal |
332 \(\Rightarrow\) 343 |
Topologie, Analyse Nonstandard et Axiome du Choix, Morillon, M. 1988, Universit\'e Blaise-Pascal |
343 \(\Rightarrow\) 62 | clear |
62 \(\Rightarrow\) 378 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
331: | If \((X_i)_{i\in I}\) is a family of compact non-empty topological spaces then there is a family \((F_i)_{i\in I}\) such that \(\forall i\in I\), \(F_i\) is an irreducible closed subset of \(X_i\). |
332: | A product of non-empty compact sober topological spaces is non-empty. |
343: | A product of non-empty, compact \(T_2\) topological spaces is non-empty. |
62: | \(C(\infty,< \aleph_{0})\): Every set of non-empty finite sets has a choice function. |
378: | Restricted Choice for Families of Well Ordered Sets: For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) such that the family of non-empty well orderable subsets of \(Y\) has a choice function. |
Comment: